Publication Date

6-7-2019

Department

Ames Laboratory; Physics and Astronomy

Campus Units

Ames Laboratory, Physics and Astronomy

OSTI ID+

1524865

Report Number

IS-J 9905

DOI

10.1103/PhysRevMaterials.3.064202

Journal Title

Physical Review Materials

Volume Number

3

Issue Number

6

First Page

064202

Abstract

Millimeter-sized MnBi2Te4 single crystals are grown out of a Bi-Te flux and characterized using magnetic, transport, scanning tunneling microscopy, and spectroscopy measurements. The magnetic structure of MnBi2Te4 below TN is determined by powder and single-crystal neutron diffraction measurements. Below TN = 24 K, Mn2+ moments order ferromagnetically in the ab plane but antiferromagnetically along the crystallographic c axis. The ordered moment is 4.04(13)μB/Mn at 10 K and aligned along the crystallographic c axis in an A-type antiferromagnetic order. Below TN, the electrical resistivity drops upon cooling or when going across the metamagnetic transition in increasing magnetic fields. A critical scattering effect is observed in the vicinity of TN in the temperature dependence of thermal conductivity, indicating strong spin-lattice coupling in this compound. However, no anomaly is observed in the temperature dependence of thermopower around TN. Fine tuning of the magnetism and/or electronic band structure is needed for the proposed topological properties of this compound. The growth protocol reported in this work might be applied to grow high-quality crystals where the electronic band structure and magnetism can be finely tuned by chemical substitutions.

DOE Contract Number(s)

AC05-00OR22725; AC02-07CH11358

Language

en

Department of Energy Subject Categories

36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS