Magnetic and electrocatalytic properties of transition metal doped MoS2 nanocrystals

Thumbnail Image
Date
2018-10-17
Authors
Martinez, L. M.
Delgado, J. A.
Saiz, C. L.
Cosio, A.
Wu, Y.
Villagran, D.
Gandha, Kinjal
Karthik, C.
Nlebedim, I. C.
Singamaneni, S. R.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National Laboratory
Abstract

In this paper, the magnetic and electrocatalytic properties of hydrothermally grown transition metal doped (10% of Co, Ni, Fe, and Mn) 2H-MoS2 nanocrystals (NCs) with a particle size 25–30 nm are reported. The pristine 2H-MoS2 NCs showed a mixture of canted anti-ferromagnetic and ferromagnetic behavior. While Co, Ni, and Fe doped MoS2 NCs revealed room temperature ferromagnetism, Mn doped MoS2 NCs showed room temperature paramagnetism, predominantly. The ground state of all the materials is found to be canted-antiferromagnetic phase. To study electrocatalytic performance for hydrogen evolution reaction, polarization curves were measured for undoped and the doped MoS2 NCs. At the overpotential of η = −300 mV, the current densities, listed from greatest to least, are FeMoS2, CoMoS2, MoS2, NiMoS2, and MnMoS2, and the order of catalytic activity found from Tafel slopes is CoMoS2 > MoS2 > NiMoS2 > FeMoS2 > MnMoS2. The increasing number of catalytically active sites in Co doped MoS2 NCs might be responsible for their superior electrocatalytic activity. The present results show that the magnetic order-disorder behavior and catalytic activity can be modulated by choosing the suitable dopants in NCs of 2D materials. ACKNOWLE

Comments
Description
Keywords
Citation
DOI
Copyright
Collections