Temperature-dependent anisotropies of upper critical field and London penetration depth

Thumbnail Image
Date
2019-07-25
Authors
Kogan, V. G.
Prozorov, Ruslan
Koshelev, A. E.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We show on a few examples of one-band materials with spheroidal Fermi surfaces and anisotropic order parameters that anisotropies γH of the upper critical field and γλ of the London penetration depth depend on temperature, a feature commonly attributed to multiband superconductors. The parameters γH and γλ may have opposite temperature dependences or may change in the same direction depending on the Fermi-surface shape and on the character of the gap nodes. For two-band systems, the behavior of anisotropies is affected by the ratios of bands densities of states, Fermi velocities, anisotropies, and order parameters. We investigate in detail the conditions determining the directions of temperature dependences of the two anisotropy factors.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections