Recent Progress on Exciton Polaritons in Layered Transition‐Metal Dichalcogenides

Thumbnail Image
Date
2019-09-05
Authors
Hu, Fengrui
Fei, Zhe
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

Exciton polaritons (EPs) are half‐light, half‐matter quasiparticles formed due to the coupling between photons and excitons in semiconductors. Their uniqueness lies at the strong light–matter interactions and long‐distance transport, thus promising for many novel applications in photonics, information, and quantum technologies. Recently, EPs in group‐VI transition‐metal dichalcogenides (TMDs) have attracted a lot of research interest due to their room‐temperature stability, long‐distance propagation, and controllability through electric gating, valley‐selective optical pumping, and precise thickness control. In this progress report, recent studies of EPs in TMDs are reviewed, highlighting their key properties and functionalities, and then discussing the potential directions for future research.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections