Publication Date

10-2-2019

Department

Ames Laboratory; Materials Science and Engineering

Campus Units

Ames Laboratory, Materials Science and Engineering

OSTI ID+

1569737

Report Number

IS-J 10037

DOI

10.1016/j.matt.2019.05.004

Journal Title

Matter

Volume Number

1

Issue Number

4

First Page

1001

Last Page

1016

Abstract

Solid electrolytes, as a promising replacement for the flammable liquid electrolyte in conventional Li-ion batteries, may greatly alleviate the safety issues and improve the energy density. However, mainstream electrodes are also solid. If solid electrolytes were employed, creating intimate electrode-electrolyte contact similar to that between solid and liquid would be quite difficult. Here we discovered that, by forming epitaxial interfaces, such a seamless solid-solid contact can happen between two widely studied systems: the Li-rich layered electrode and perovskite solid electrolyte. Atomic-resolution electron microscopy unambiguously demonstrated that the former can be epitaxially embedded into the latter. The solid-solid composite electrode formed this way exhibited a rate capability no lower than the one based on solid-liquid contact. With the periodic misfit dislocations reconciling structural differences, such epitaxy can tolerate large lattice mismatch, and thus may occur between many layered electrodes and perovskite solid electrolytes.

DOE Contract Number(s)

2017YFA0208300; 2018YFA0209600; 51802302; 51788104; WK2060190085; WK2340000076

Language

en

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS