Metastable intermetallic phases in the Al-Sm system

No Thumbnail Available
Date
2019-12-01
Authors
Zhou, S. H.
Meng, F. Q.
Kramer, Matthew
Ott, Ryan
Zhang, Feng
Ye, Zhuo
Jain, Shubhra
Napolitano, Ralph
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMaterials Science and Engineering
Abstract

The thermodynamic landscape involving several metastable phases in the glass-forming Al-Sm system is assessed, integrating experimental measurements and first principles calculations into a comprehensive CALPHAD description. The phases examined here include Al41Sm5-η, Al60Sm11-ε, Al5Sm-θ, Al5Sm-π and Al4Sm-γ, having basis stoichiometries from 9 to 20 at% Sm, a range over which the Al-fcc and Al3Sm phases are stable. Amongst the metastable phases examined, our findings indicate that the Al41Sm5-η and Al60Sm11-ε phases comprise the convex hull of minimum formation energies at absolute zero. Competitive crystallization processes were investigated through situ X-ray diffraction and differential scanning calorimetry and used to assess relative stability within the overall landscape. Asserting thermodynamic scenarios consistent with our measurements, temperature-dependent Gibbs free energies for the metastable phases are proposed along with the corresponding constrained phase diagrams, comprehensively showing metastable phases and associated invariant reactions. Assumptions and limitations of the proposed thermodynamic model are discussed with reference to available transport data.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections