Publication Date

3-1-2020

Department

Ames Laboratory

Campus Units

Ames Laboratory

OSTI ID+

1579930

Report Number

IS-J 10090

DOI

10.1016/j.jmmm.2019.166058

Journal Title

Journal of Magnetism and Magnetic Materials

Volume Number

497

First Page

166058

Abstract

Understanding of spin-gapless semiconductors with fully spin-polarized charge carriers is critically important because of their promise for spintronic applications. Here, we report non-collinear spin structures, magnetic ground state, and effective exchange interactions of the spin-gapless semiconductor CoFeCrAl investigated with noncollinear density functional calculations. The ground state of CoFeCrAl is ferrimagnetic and has a spin configuration with ↓ Fe, ↑ Co and ↑ Cr spins. In our constrained calculations, the magnetizations of the Fe, Co, and Cr sublattices are rotated by various angles θ, which give rise to three sets of noncollinear spin structures. For all three elements, the magnetic energy increases with the angle, which reconfirms the ferrimagnetic spin structure. During rotation, the magnitudes of the Co and Cr spins remain almost unchanged, whereas that of Fe strongly decreases as a function of the angle θ. This indicates that the finite-temperature behavior of CoFeCrAl is characterized by a pronounced non-Heisenberg behavior of the ↓ Fe moments, whereas the ↑ Co and ↑ Cr moments are Heisenberg-like. We discuss how this feature affects the finite-temperature behavior of the alloy beyond the commonly considered intersublattice Heisenberg exchange.

DOE Contract Number(s)

AC02-07CH11358; FG02-04ER46152

Language

en

Department of Energy Subject Categories

71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS