Publication Date

1-2-2020

Department

Ames Laboratory; Materials Science and Engineering

Campus Units

Ames Laboratory, Materials Science and Engineering

OSTI ID+

1581590

Report Number

IS-J 10130

DOI

10.1063/1.5129907

Journal Title

AIP Advances

Volume Number

10

Issue Number

1

First Page

015103

Abstract

Crystallographic, magnetic, electrical transport and thermodynamic properties of pseudo-binary Nd7Ni2Pd compound have been studied using temperature-dependent x-ray powder diffraction and physical property measurements. Compared to the ferromagnetic parent Nd7Pd3, the ground state of Nd7Ni2Pd is antiferromagnetic, and it exhibits strong metamagnetism. The measurements indicate two antiferromagnetic transitions in fields less than 8 kOe: a second-order paramagnetic to antiferromagnetic at TN2 = 29 K and a weak first-order antiferromagnetic to antiferromagnetic transition at TN1 = 24.5 K. The compound becomes ferromagnetic in fields of 8 kOe and higher with TC = 30 K. Temperature dependence of lattice parameters is anomalous, most prominently in the basal plane at ∼30 K; however, there is no detectable structural distortion or clear volume discontinuity around 25 K, suggesting a significant weakening of the first-order transition when compared to the binary Nd7Pd3.

DOE Contract Number(s)

AC02-07CH11358; 734303

Language

en

Department of Energy Subject Categories

36 MATERIALS SCIENCE

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS