Publication Date
2-6-2020
Department
Ames Laboratory; Physics and Astronomy
Campus Units
Ames Laboratory, Physics and Astronomy
OSTI ID+
1598067
Report Number
IS-J 10148
DOI
10.1063/1.5139437
Journal Title
Review of Scientific Instruments
Volume Number
91
Issue Number
2
First Page
023904
Abstract
Uniaxial stress, as well as hydrostatic pressure are often used to tune material properties in condensed matter physics. Here, we present a setup that allows for the study of the combined effects of quasi-uniaxial stress and hydrostatic pressure. Following earlier designs for measurements under finite stress at ambient pressures [e.g., Chu et al., Science 337, 710 (2012)], the present setup utilizes a piezoelectric actuator to change stress in situ inside the piston–cylinder pressure cell. We show that the actuator can be operated over the full temperature (from 30 K up to 260 K) and pressure range (up to ≈2 GPa), resulting in a clear and measurable quasi-uniaxial strain. To demonstrate functionality, measurements of the elastoresistance (i.e., the change of resistance of a sample as a response to quasi-uniaxial strain) under finite hydrostatic pressure on the iron-based compound BaFe2As2 are presented as a proof-of-principle example and discussed in the framework of electronic nematicity. Overall, this work introduces the combination of in situ tunable quasi-uniaxial stress and large (up to ≈2 GPa) hydrostatic pressure as a powerful combination in the study of novel electronic phases. In addition, it also points toward further technical advancements which can be made in the future.
DOE Contract Number(s)
AC02-07CH11358
Language
en
Publisher
Iowa State University Digital Repository, Ames IA (United States)