Publication Date

5-19-2020

Department

Ames Laboratory; Materials Science and Engineering

Campus Units

Ames Laboratory, Materials Science and Engineering

OSTI ID+

1630171

Report Number

IS-J 10196

DOI

10.1063/5.0003275

Journal Title

Journal of Applied Physics

Volume Number

127

Issue Number

19

First Page

194501

Abstract

Elastocaloric cooling holds promise for energy-efficient heat pumping near room temperature with low environmental impact. Its adoption is, however, impeded by disproportionally large sizes of actuators compared with the active material volume. Taking magnetocaloric cooling as the baseline, the value of no more than 10:1 actuator volume to active material volume should lead to both size- and cost-effective solutions that may potentially be competitive with vapor-compression devices. With the goal to establish performance metrics that can lead to informed actuator selection for specific regenerator requirements, we analyze a wide range of elastocaloric materials and actuator technologies to find the best matches. We find that actuation with magnetic shape memory alloys meets all requirements; however, this technology is currently in early developmental stages and such actuators are not widely commercially available. Another promising and easily accessible option is standard rotary electric motors in combination with rotary-to-linear transduction mechanisms. A theoretical analysis of two case studies of elastocaloric systems using rotary electric motors with a Scotch yoke mechanism demonstrates the usefulness of our approach. Actuator requirements are based on two different regenerator configurations: one starting from zero strain without any mechanical energy recovery and another with 2% pre-strain and mechanical energy recovery to reduce the power and torque required from the motor. Our results indicate that the 10:1 target actuator to active material volume ratio can be met and feasibly lowered further, demonstrating that the proposed method for selecting actuators makes compact and efficient elastocaloric systems possible.

DOE Contract Number(s)

AC02-07CH11358

Language

en

Publisher

Iowa State University Digital Repository, Ames IA (United States)

IS-J 10196 SI.pdf (224 kB)
Supplemental Information

Available for download on Wednesday, May 19, 2021

Share

COinS