Publication Date
7-2017
Department
Ames Laboratory; Materials Science and Engineering; Chemistry; Physics and Astronomy; Office of Biotechnology
Campus Units
Materials Science and Engineering, Physics and Astronomy, Chemistry, Ames Laboratory
Report Number
IS-J 9513
DOI
10.1116/1.4991519
Journal Title
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Volume Number
35
First Page
061401
Abstract
Using x-ray photoelectron spectroscopy, the authors characterize the thermally activated changes that occur when Cu is deposited on amorphous carbon supported on Si at 300 K, then heated to 800 K. The authors compare data for Cu on the basal plane of graphite with pinning defects, where scanning tunneling microscopy reveals that coarsening is the main process in this temperature range. Coarsening begins at 500–600 K and causes moderate attenuation of the Cu photoelectron signal. For Cu on amorphous carbon, heating to 800 K causes Cu to diffuse into the bulk of the film, based on the strong attenuation of the Cu signal. Diffusion into the bulk of the amorphous carbon film is confirmed by changes in the shape of the Cu 2p inelastic tail, and by comparison of attenuation between Cu 2p and Cu 3p lines. The magnitude of the photoelectron signal attenuation is compatible with Cu distributed homogeneously throughout the amorphous carbon film, and is not compatible with Cu at or below the C–Si interface under the conditions of our experiments. Desorption is not significant at temperatures up to 800 K.
Language
en
Department of Energy Subject Categories
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Publisher
Iowa State University Digital Repository, Ames IA (United States)
Included in
Condensed Matter Physics Commons, Materials Science and Engineering Commons, Physical Chemistry Commons