Title

Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules

Publication Date

5-20-2020

Department

Ames Laboratory; Chemistry

Campus Units

Ames Laboratory, Chemistry

OSTI ID+

1630734

Report Number

IS-J 10220

DOI

10.1021/acsami.0c05344

Journal Title

ACS Applied Materials & Interfaces

Volume Number

12

Issue Number

20

First Page

23002

Last Page

23009

Abstract

Multifunctional metal–organic frameworks (MOFs) that possess permanent porosity are promising catalysts in organic transformation. Herein, we report the construction of a hierarchical MOF functionalized with basic aliphatic amine groups and polyvinylpyrrolidone-capped platinum nanoparticles (Pt NPs). The postsynthetic covalent modification of organic ligands increases basic site density in the MOF and simultaneously introduces mesopores to create a hierarchically porous structure. The multifunctional MOF is capable of catalyzing a sequential Knoevenagel condensation–hydrogenation–intramolecular cyclization reaction. The unique selective reduction of the nitro group to intermediate hydroxylamine by Pt NPs supported on MOF followed by intramolecular cyclization with a cyano group affords an excellent yield (up to 92%) to the uncommon quinoline N-oxides over quinolines. The hierarchical MOF and polyvinylpyrrolidone capping agent on Pt NPs synergistically facilitate the enrichment of substrates and thus lead to high activity in the reduction–intramolecular cyclization reaction. The bioactivity assay indicates that the synthesized quinoline N-oxides evidently inhibit the proliferation of lung cancer cells. Our findings demonstrate the feasibility of MOF-catalyzed direct synthesis of bioactive molecules from readily available compounds under mild conditions.

DOE Contract Number(s)

AC02-07CH11358; 21722609; 21878266; 2016YFA0202900; CHE-1566445

Language

en

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS