Title
Strain‐Enhanced Metallic Intermixing in Shape‐Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics
Publication Date
6-22-2020
Department
Ames Laboratory; Chemistry; Physics and Astronomy
Campus Units
Ames Laboratory, Chemistry, Physics and Astronomy
OSTI ID+
1609165
Report Number
10050
DOI
10.1002/anie.202001067
Journal Title
Angewandte Chemie International Edition
Volume Number
59
Issue Number
26
First Page
10574
Last Page
10580
Abstract
Controlling the surface composition of shaped bimetallic nanoparticles could offer precise tunability of geometric and electronic surface structure for new nanocatalysts. To achieve this goal, a platform for studying the intermixing process in a shaped nanoparticle was designed, using multilayered Pd‐Ni‐Pt core–shell nanocubes as precursors. Under mild conditions, the intermixing between Ni and Pt could be tuned by changing layer thickness and number, triggering intermixing while preserving nanoparticle shape. Intermixing of the two metals is monitored using transmission electron microscopy. The surface structure evolution is characterized using electrochemical methanol oxidation. DFT calculations suggest that the low‐temperature mixing is enhanced by shorter diffusion lengths and strain introduced by the layered structure. The platform and insights presented are an advance toward the realization of shape‐controlled multimetallic nanoparticles tailored to each potential application.
DOE Contract Number(s)
AC02-07CH11358; AC02-07CH11338; AC02-05CH11231
Language
en
Publisher
Iowa State University Digital Repository, Ames IA (United States)