Title

Strain‐Enhanced Metallic Intermixing in Shape‐Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics

Publication Date

6-22-2020

Department

Ames Laboratory; Chemistry; Physics and Astronomy

Campus Units

Ames Laboratory, Chemistry, Physics and Astronomy

OSTI ID+

1609165

Report Number

10050

DOI

10.1002/anie.202001067

Journal Title

Angewandte Chemie International Edition

Volume Number

59

Issue Number

26

First Page

10574

Last Page

10580

Abstract

Controlling the surface composition of shaped bimetallic nanoparticles could offer precise tunability of geometric and electronic surface structure for new nanocatalysts. To achieve this goal, a platform for studying the intermixing process in a shaped nanoparticle was designed, using multilayered Pd‐Ni‐Pt core–shell nanocubes as precursors. Under mild conditions, the intermixing between Ni and Pt could be tuned by changing layer thickness and number, triggering intermixing while preserving nanoparticle shape. Intermixing of the two metals is monitored using transmission electron microscopy. The surface structure evolution is characterized using electrochemical methanol oxidation. DFT calculations suggest that the low‐temperature mixing is enhanced by shorter diffusion lengths and strain introduced by the layered structure. The platform and insights presented are an advance toward the realization of shape‐controlled multimetallic nanoparticles tailored to each potential application.

DOE Contract Number(s)

AC02-07CH11358; AC02-07CH11338; AC02-05CH11231

Language

en

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS