Development of interatomic potential for Al–Tb alloys using a deep neural network learning method

Thumbnail Image
Date
2020-07-22
Authors
Tang, L.
Yang, Z. J.
Wen, T. Q.
Ho, Kai-Ming
Kramer, Matthew
Wang, Cai-Zhuang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

An interatomic potential for the Al–Tb alloy around the composition of Al90Tb10 is developed using the deep neural network (DNN) learning method. The atomic configurations and the corresponding total potential energies and forces on each atom obtained from ab initio molecular dynamics (AIMD) simulations are collected to train a DNN model to construct the interatomic potential for the Al–Tb alloy. We show that the obtained DNN model can well reproduce the energies and forces calculated by AIMD simulations. Molecular dynamics (MD) simulations using the DNN interatomic potential also accurately describe the structural properties of the Al90Tb10 liquid, such as partial pair correlation functions (PPCFs) and bond angle distributions, in comparison with the results from AIMD simulations. Furthermore, the developed DNN interatomic potential predicts the formation energies of the crystalline phases of the Al–Tb system with an accuracy comparable to ab initio calculations. The structure factors of the Al90Tb10 metallic liquid and glass obtained by MD simulations using the developed DNN interatomic potential are also in good agreement with the experimental X-ray diffraction data. The development of short-range order (SRO) in the Al90Tb10 liquid and the undercooled liquid is also analyzed and three dominant SROs, i.e., Al-centered distorted icosahedron (DISICO) and Tb-centered ‘3661’ and ‘15551’ clusters, respectively, are identified.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections