Efficient Step-Merged Quantum Imaginary Time Evolution Algorithm for Quantum Chemistry

No Thumbnail Available
Date
2020-09-02
Authors
Gomes, Niladri
Zhang, Feng
Berthusen, Noah
Wang, Cai-Zhuang
Ho, Kai-Ming
Orth, Peter
Yao, Yongxin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyElectrical and Computer Engineering
Abstract

We develop a resource-efficient step-merged quantum imaginary time evolution approach (smQITE) to solve for the ground state of a Hamiltonian on quantum computers. This heuristic method features a fixed shallow quantum circuit depth along the state evolution path. We use this algorithm to determine the binding energy curves of a set of molecules, including H2, H4, H6, LiH, HF, H2O, and BeH2, and find highly accurate results. The required quantum resources of smQITE calculations can be further reduced by adopting the circuit form of the variational quantum eigensolver (VQE) technique, such as the unitary coupled cluster ansatz. We demonstrate that smQITE achieves a similar computational accuracy as VQE at the same fixed-circuit ansatz, without requiring a generally complicated high-dimensional nonconvex optimization. Finally, smQITE calculations are carried out on Rigetti quantum processing units, demonstrating that the approach is readily applicable on current noisy intermediate-scale quantum devices.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections