Title
Activation and Assembly of Plasmonic-Magnetic Nanosurfactants for Encapsulation and Triggered Release
Publication Date
11-13-2020
Department
Materials Science and Engineering; Industrial and Manufacturing Systems Engineering; Ames Laboratory
Campus Units
Industrial and Manufacturing Systems Engineering, Materials Science and Engineering, Ames Laboratory
Report Number
IS-J 10392
DOI
10.1021/acs.nanolett.0c03641
Journal Title
Nano Letters
Volume Number
20
Issue Number
12
First Page
8773
Last Page
8780
Abstract
Multifunctional surfactants hold great potentials in catalysis, separation, and biomedicine. Highly active plasmonic-magnetic nanosurfactants are developed through a novel acid activation treatment of Au–Fe3O4 dumbbell nanocrystals. The activation step significantly boosts nanosurfactant surface energy and enables the strong adsorption at interfaces, which reduces the interfacial energy one order of magnitude. Mediated through the adsorption at the emulsion interfaces, the nanosurfactants are further constructed into free-standing hierarchical structures, including capsules, inverse capsules, and two-dimensional sheets. The nanosurfactant orientation and assembly structures follow the same packing parameter principles of surfactant molecules. Furthermore, nanosurfactants demonstrate the capability to disperse and encapsulate homogeneous nanoparticles and small molecules without adding any molecular surfactants. The assembled structures are responsive to external magnetic field, and triggered release is achieved using an infrared laser by taking advantage of the enhanced surface plasmon resonance of nanosurfactant assemblies. Solvent and pH changes are also utilized to achieve the cargo release.
Language
en
Publisher
Iowa State University Digital Repository, Ames IA (United States)
Supplementary Information