Competitive formation of intercalated versus supported metal nanoclusters during deposition on layered materials with surface point defects

Thumbnail Image
Date
2021-01-11
Authors
Han, Yong
Lii-Rosales, Ann
Tringides, Michael
Evans, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyChemistry
Abstract

Intercalated metal nanoclusters (NCs) can be formed under the surface of graphite after sputtering to generate surface “portal” defects that allow deposited atoms to reach the subsurface gallery. However, there is a competition between formation of supported NCs on top of the surface and intercalated NCs under the surface, the latter only dominating at sufficiently high temperature. A stochastic model incorporating appropriate system thermodynamics and kinetics is developed to capture this complex and competitive nucleation and growth process. Kinetic Monte Carlo simulation shows that the model captures experimental trends observed for Cu and other metals and reveals that higher temperatures are needed to facilitate detachment of atoms from supported NCs enabling them to reach the gallery.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections