Quasi-one-dimensional magnetism in the spin-1/2 antiferromagnet BaNa2 Cu (VO4)2

Thumbnail Image
Date
2021-02-08
Authors
Sebastian, Sebin
Somesh, K.
Nandi, M.
Ahmed, N.
Bag, P.
Baenitz, M.
Koo, B.
Sichelschmidt, J.
Tsirlin, A. A.
Furukawa, Yuji
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We report synthesis and magnetic properties of quasi-one-dimensional spin-12 Heisenberg antiferromagnetic chain compound BaNa2Cu(VO4)2. This orthovanadate has a centrosymmetric crystal structure, C2/c, where the magnetic Cu2+ ions form spin chains. These chains are arranged in layers, with the chain direction changing by 62∘ between the two successive layers. Alternatively, the spin lattice can be viewed as anisotropic triangular layers upon taking the interchain interactions into consideration. Despite this potential structural complexity, temperature-dependent magnetic susceptibility, heat capacity, electron spin resonance intensity, and nuclear magnetic resonance (NMR) shift agree well with the uniform spin-1/2 Heisenberg chain model with an intrachain coupling of J/kB≃5.6 K. The saturation field obtained from the magnetic isotherm measurement consistently reproduces the value of J/kB. Further, the 51V NMR spin-lattice relaxation rate mimics the one-dimensional character in the intermediate temperature range, whereas magnetic long-range order sets in below TN≃0.25 K. The effective interchain coupling is estimated to be J⊥/kB≃0.1 K. The theoretical estimation of exchange couplings using band-structure calculations reciprocate our experimental findings and unambiguously establish the one-dimensional character of the compound. Finally, the spin lattice of BaNa2Cu(VO4)2 is compared with the chemically similar but not isostructural compound BaAg2Cu(VO4)2.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections