Publication Date

12-27-2017

Department

Ames Laboratory; Physics and Astronomy

Campus Units

Physics and Astronomy, Ames Laboratory

OSTI ID+

1414976

DOI

10.1103/PhysRevB.96.214438

Journal Title

Physical Review B

Volume Number

96

Issue Number

21

First Page

214438

Abstract

Double-stripe magnetism [ Q = ( π / 2 , π / 2 ) ] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2 Sb 2 O families of superconductors. Double-stripe order is captured within a J 1 − J 2 − J 3 Heisenberg model in the regime J 3 ≫ J 2 ≫ J 1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector ( π , π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large- N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

Language

en

Department of Energy Subject Categories

36 MATERIALS SCIENCE

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS