Publication Date

4-30-2021

Department

Ames Laboratory; Physics and Astronomy

Campus Units

Ames Laboratory, Physics and Astronomy

OSTI ID+

1784536

Report Number

IS-J 10486

DOI

10.1103/PhysRevLett.126.176102

Journal Title

Physical Review Letters

Volume Number

126

Issue Number

17

First Page

176102

Abstract

Deposition of Bi on InSb(111)B reveals a striking Sierpiński-triangle (ST)-like structure in Bi thin films. Such a fractal geometric topology is further shown to turn off the intrinsic electronic topology in a thin film. Relaxation of a huge misfit strain of about 30% to 40% between Bi adlayer and substrate is revealed to drive the ST-like island formation. A Frenkel-Kontrova model is developed to illustrate the enhanced strain relief in the ST islands offsetting the additional step energy cost. Besides a sufficiently large tensile strain, forming ST-like structures also requires larger adlayer-substrate and intra-adlayer elastic stiffnesses, and weaker intra-adlayer interatomic interactions.

DOE Contract Number(s)

AC02-07CH11358

Language

en

Department of Energy Subject Categories

75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS