Electronic properties of single-layer CoO2/Au(111)

Thumbnail Image
Date
2021-06-11
Authors
Holt, Ann Julie
Pakdel, Sahar
Rodríguez-Fernández, Jonathan
Zhang, Yu
Curcio, Davide
Sun, Zhaozong
Lacovig, Paolo
Yao, Yong-Xin
Lauritsen, Jeppe
Lizzit, Silvano
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We report direct measurements via angle-resolved photoemission spectroscopy (ARPES) of the electronic dispersion of single-layer (SL) CoO2. The Fermi contour consists of a large hole pocket centered at the point. To interpret the ARPES results, we use density functional theory (DFT) in combination with the multi-orbital Gutzwiller Approximation (DFT+GA), basing our calculations on crystalline structure parameters derived from x-ray photoelectron diffraction and low-energy electron diffraction. Our calculations are in good agreement with the measured dispersion. We conclude that the material is a moderately correlated metal. We also discuss substrate effects, and the influence of hydroxylation on the CoO2 SL electronic structure.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections