Neural-network model for force prediction in multi-principal-element alloys

Thumbnail Image
Date
2021-07-09
Authors
Singh, R.
Singh, Prashant
Sharma, A.
Bingol, O. R.
Balu, Aditya
Sarkar, Soumik
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Krishnamurthy, Adarsh
Associate Professor
Person
Johnson, Duane
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMechanical EngineeringMaterials Science and EngineeringPhysics and Astronomy
Abstract

Atomistic simulations can provide useful insights into the physical properties of multi-principal-element alloys. However, classical potentials mostly fail to capture key quantum (electronic-structure) effects. We present a deep 3D convolutional neural network (3D CNN) based framework combined with a voxelization technique to design interatomic potentials for chemically complex alloys. We highlight the performance of the 3D CNN model and its efficacy in computing potentials using the medium-entropy alloy TaNbMo. In order to provide insights into the effect of voxel resolution, we implemented two approaches based on the inner and outer bounding boxes. An efficient 3D CNN model, which is as accurate as the density-functional theory (DFT) approach, for calculating potentials will provide a promising schema for accurate atomistic simulations of structure and dynamics of general multi-principle element alloys.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections