Publication Date

12-2017

Department

Ames Laboratory; Chemistry

Campus Units

Chemistry, Ames Laboratory

OSTI ID+

1415821

Report Number

IS-J 9538

DOI

10.1063/1.4998255

Journal Title

The Journal of Chemical Physics

Volume Number

147

Issue Number

21

First Page

214502

Abstract

A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.

Language

en

Department of Energy Subject Categories

37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Available for download on Saturday, December 01, 2018

Share

COinS