Determination of liquid diffusion coefficients along a liquidus phase boundary

Thumbnail Image
Date
1991-02-01
Authors
Lograsso, Thomas
Hellawell, A.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lograsso, Thomas
Ames Laboratory Division Director
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Journal Issue
Is Version Of
Versions
Series
Department
Ames National Laboratory
Abstract

A method for determination of liquid phase diffusion coefficients along the liquidus curve in a binary alloy is presented. The technique is similar to that proposed by Watson and Hunt [1] but is more applicable to a larger selection of alloy systems. The technique utilizes temperature gradient zone melting (TGZM) to produce compositional adjustments along the length of a stationary sample placed in a temperature gradient. Diffusion coefficients as a function of position and, hence, temperature in the sample are calculated from measurement of the compositional changes occurring during TGZM and the temperature profile in the alloy. Since coefficients can be measured over a wide range of temperatures, the activation energy for diffusion can also be determined. The technique is demonstrated for a Cu-85 wt pct Sn alloy.

Comments

Copyright 1991 ASM International. This paper was published in Metallurgical Transactions B 22 (1991): 21–26, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 1991
Collections