Anisotropic Hall effect in single-crystal heavy-fermion YbAgGe

Thumbnail Image
Date
2005-02-15
Authors
Bud'ko, Sergey
Morosan, Emilia
Canfield, Paul
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

Temperature- and field-dependent Hall effect measurements are reported for YbAgGe, a heavy-fermion compound exhibiting a field-induced quantum phase transition, and for two other closely related members of the RAgGe series: a nonmagnetic analog, LuAgGe and a representative, “good local moment,” magnetic material, TmAgGe. Whereas the temperature-dependent Hall coefficient of YbAgGe shows behavior similar to what has been observed in a number of heavy-fermion compounds, the low temperature, field-dependent measurements reveal well-defined, sudden changes with applied field; in specific for H⊥c a clear local maximum that sharpens as temperature is reduced below 2 K and that approaches a value of 45 kOe—a value that has been proposed as the T=0 quantum critical point. Similar behavior was observed for H∥c where a clear minimum in the field-dependent Hall resistivity was observed at low temperatures. Although at our base temperatures it is difficult to distinguish between the field-dependent behavior predicted for (i) diffraction off a critical spin density wave or (ii) breakdown in the composite nature of the heavy electron, for both field directions there is a distinct temperature dependence of a feature that can clearly be associated with a field-induced quantum critical point at T=0 persisting up to at least 2 K.

Comments

This article is from Physical Review B 71 (2005): 054408, doi:10.1103/PhysRevB.71.054408. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 2005
Collections