Crossover in the magnetic response of single-crystalline Ba1−xKxFe2As2 and Lifshitz critical point evidenced by Hall effect measurements

Thumbnail Image
Date
2014-12-01
Authors
Liu, Yong
Lograsso, Thomas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lograsso, Thomas
Ames Laboratory Division Director
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National Laboratory
Abstract

We report on the doping evolution of magnetic susceptibility χ(T) and Hall coefficient RH in high-quality Ba1−xKxFe2As2 (0.13≤x≤1) single crystals. It is found that the normal-state magnetic susceptibility of Ba1−xKxFe2As2 compounds undergoes a crossover from linear-T dependence in the undoped and underdoped samples into KFe2As2-type magnetic response in the overdoped samples with increasing K content. Although magnetic susceptibility χ(T) of optimally doped samples (0.34≤x≤0.47) still follows a monotonic increase with increasing temperature, a big hump around 300 K emerges. As x exceeds 0.53, a broad peak forms in overdoped samples (0.53≤x≤1), which shifts toward 120 K for the end member KFe2As2. Above the peak temperature T∗=120 K, a Curie-Weiss-like behavior is observed in KFe2As2. The Hall coefficient RH of underdoped sample x=0.22shows a rapid increase above spin-density-wave transition temperature TSDW. Below TSDW, it increases slowly. RH of optimally doped and slightly overdoped samples (0.34≤x≤0.65) shows relatively weak temperature dependence and a saturation tendency below 150 K. However, RH of K heavily overdoped samples (0.80≤x≤1) increases rapidly below 150 K. Meanwhile, the Hall angle cotθH displays a concave temperature dependence within the doping range 0.22≤x≤0.55, whereas it changes to a convex temperature dependence within the doping range 0.65≤x≤1. The dramatic change coincides with the Lifshitz transition occurring around the critical doping x=0.80, where angle photoemission spectroscopy measurements had confirmed that the electron pocket disappears with excess hole doping in the Ba1−xKxFe2As2 system. It is suggested that the characteristic temperature T∗ at around 120∼150 K observed in susceptibility and the Hall coefficient, as well as previously reported resistivity data, may indicate an incoherence-coherence crossover in the Ba1−xKxFe2As2 system.

Comments

This article is from Physical Review B 90 (2014): 224508, doi:10.1103/PhysRevB.90.224508. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections