Campus Units

Materials Science and Engineering, Ames Laboratory, Center for Nondestructive Evaluation

Document Type

Article

Publication Date

2005

Journal or Book Title

Journal of Applied Physics

Volume

97

Issue

4

First Page

044502-1

Last Page

044502-3

DOI

10.1063/1.1839633

Abstract

Metal bonded cobaltferrite composites have been shown to be promising candidate materials for use in magnetoelastic stress sensors, due to their large magnetostriction and high sensitivity of magnetization to stress. However previous results have shown that below 60°C" role="presentation" style="box-sizing: border-box; display: inline; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(51, 51, 51); font-family: Arial, sans-serif; position: relative;">60°C60°C the cobaltferritematerial exhibits substantial magnetomechanical hysteresis. In the current study, measurements indicate that substituting Mn for some of the Fe in the cobaltferrite can lower the Curie temperature of the material while maintaining a suitable magnetostriction for stress sensing applications. These results demonstrate the possibility of optimizing the magnetomechanical hysteresis of cobalt ferrite-based composites for stress sensor applications, through control of the Curie temperature.

Comments

The following article appeared in Journal of Applied Physics 97, 4 (2005); 044502 and may be found at doi: 10.1063/1.1839633.

Rights

Copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS