Field-temperature phase diagram and entropy landscape of CeAuSb2

Thumbnail Image
Date
2016-05-15
Authors
Zhao, Lishan
Yelland, Edward
Bruin, Jan
Sheikin, Ilya
Canfield, Paul
Fritsch, Veronika
Sakai, Hideaki
Mackenzie, Andrew
Hicks, Clifford
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We report a field-temperature phase diagram and an entropy map for the heavy-fermion compound CeAuSb2. CeAuSb2 orders antiferromagnetically below TN=6.6 K and has two metamagnetic transitions, at 2.8 and 5.6 T. The locations of the critical end points of the metamagnetic transitions, which may play a strong role in the putative quantum criticality of CeAuSb2 and related compounds, are identified. The entropy map reveals an apparent entropy balance with Fermi-liquid behavior, implying that above the Néel transition the Ce moments are incorporated into the Fermi liquid. High-field data showing that the magnetic behavior is remarkably anisotropic are also reported.

Comments

This article is from Phys. Rev. B 93, 195124, doi:10.1103/PhysRevB.93.195124. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections