Validation and Further Characterization of a Major Quantitative Trait Locus Associated with Host Response to Experimental Infection with Porcine Reproductive and Respiratory Syndrome Virus

Thumbnail Image
Date
2014-02-01
Authors
Boddicker, Nicholas
Garrick, Dorian
Rowland, Raymond
Lunney, Joan
Reecy, James
Dekkers, Jack
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Reecy, James
Associate Vice President
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Animal Science
Abstract

Infectious diseases are costly to the swine industry; porcine reproductive and respiratory syndrome (PRRS) is the most devastating. In earlier work, a quantitative trait locus associated with resistance/susceptibility to PRRS virus was identified on Sus scrofa chromosome 4 using approximately 560 experimentally infected animals from a commercial cross. The favorable genotype was associated with decreased virus load and increased weight gain (WG). The objective here was to validate and further characterize the association of the chromosome 4 region with PRRS resistance using data from two unrelated commercial crossbred populations. The validation populations consisted of two trials each of approximately 200 pigs sourced from different breeding companies that were infected with PRRS virus and followed for 42 days post-infection. Across all five trials, heritability estimates were 0.39 and 0.34 for viral load (VL; area under the curve of log-transformed viremia from 0 to 21 days post-infection) and WG to 42 days post-infection respectively. Effect estimates of SNP WUR10000125 in the chromosome 4 region were in the same directions and of similar magnitudes in the two new trials as had been observed in the first three trials. Across all five trials, the 1-Mb region on chromosome 4 explained 15 percent of genetic variance for VL and 11 percent for WG. The effect of the favorable minor allele at SNP WUR10000125 was dominant. Ordered genotypes for SNP WUR10000125 showed that the effect was present irrespective of whether the favorable allele was paternally or maternally inherited. These results demonstrate that selection for host response to PRRS virus infection could reduce the economic impact of PRRS.

Comments

This article is from Animal Genetics 4 5 (2014): 48, doi:10.1111/age.12079.

Description
Keywords
Citation
DOI
Copyright
Collections