Immune-Related Gene Expression in Two B-Complex Disparate Genetically Inbred Fayoumi Chicken Lines Following Eimeria maxima Infection

Thumbnail Image
Date
2008-01-01
Authors
Kim, D, K,
Lillehoj, Hyun
Hong, Y. H.
Park, D. W.
Lamont, Susan
Han, J. Y.
Lillehoj, Eivind
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lamont, Susan
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Animal Science
Abstract

To investigate the influence of genetic differences in the MHC on susceptibility to avian coccidiosis, M5.1 and M15.2 B-haplotype-disparate Fayoumi chickens were orally infected with live Eimeria maxima oocysts, and BW gain, fecal oocyst production, and expression of 14 immune-related genes were determined as parameters of protective immunity. Weight loss was reduced and fecal parasite numbers were lower in birds of the M5.1 line compared with M15.2 line birds. Intestinal intraepithelial lymphocytes from M5.1 chickens expressed greater levels of transcripts encoding interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-8, IL-12, IL-15, IL-17A, inducible nitric oxide synthase, and lipopolysaccharide-induced tumor necrosis factor-α factor and lower levels of mRNA for IFN-α, IL-10, IL-17D, NK-lysin, and tumor necrosis factor superfamily 15 compared with the M15.2 line. In the spleen, E. maxima infection was associated with greater expression levels of IFN-γ, IL-15, and IL-8 and lower levels of IL-6, IL-17D, and IL-12 in M5.1 vs. M15.2 birds. These results suggest that genetic determinants within the chicken MHC influence resistance to E. maxima infection by controlling the local and systemic expression of immune-related cytokine and chemokine genes.

Comments

This article is from Poultry Science 87 (2008): 433, doi:10.3382/ps.2007-00383.

Description
Keywords
Citation
DOI
Copyright
Collections