Campus Units

Animal Science

Document Type

Article

Publication Version

Published Version

Publication Date

2015

Journal or Book Title

BMC Genomics

Volume

16

Issue

302

First Page

1

Last Page

10

DOI

10.1186/s12864-015-1500-x

Abstract

Background: Genome signatures of artificial selection in U.S. Jersey cattle were identified by examining changes in haplotype homozygosity for a resource population of animals born between 1953 and 2007. Genetic merit of this population changed dramatically during this period for a number of traits, especially milk yield. The intense selection underlying these changes was achieved through extensive use of artificial insemination (AI), which also increased consanguinity of the population to a few superior Jersey bulls. As a result, allele frequencies are shifted for many contemporary animals, and in numerous cases to a homozygous state for specific genomic regions. The goal of this study was to identify those selection signatures that occurred after extensive use of AI since the 1960, using analyses of shared haplotype segments or Runs of Homozygosity. When combined with animal birth year information, signatures of selection associated with economically important traits were identified and compared to results from an extended haplotype homozygosity analysis. Results: Overall, our results reveal that more recent selection increased autozygosity across the entire genome, but some specific regions increased more than others. A genome-wide scan identified more than 15 regions with a substantial change in autozygosity. Haplotypes found to be associated with increased milk, fat and protein yield in U.S. Jersey cattle also consistently increased in frequency. Conclusions: The analyses used in this study was able to detect directional selection over the last few decades when individual production records for Jersey animals were available.

Comments

This is an article from BMC Genomics 16 (2015):1, doi:10.1186/s12864-015-1500-x. Posted with permission.

Rights

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited

Copyright Owner

Kim et al

Language

en

File Format

application/pdf

Share

COinS