Campus Units

Animal Science, Statistics, Veterinary Microbiology and Preventive Medicine

Document Type

Article

Publication Version

Published Version

Publication Date

12-2016

Journal or Book Title

Poultry Science

Volume

95

Issue

12

First Page

2803

Last Page

2814

DOI

10.3382/ps/pew202

Abstract

Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus.

Comments

This article is published as Sun, Hongyan, Peng Liu, Lisa K. Nolan, and Susan J. Lamont. "Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection." Poultry Science 95, no. 12 (2016): 2803-2814. DOI: 10.3382/ps/pew202. Posted with permission.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright Owner

The Author(s)

Language

en

File Format

application/pdf

Share

COinS