Campus Units

Animal Science

Document Type

Article

Publication Version

Published Version

Publication Date

2-2021

Journal or Book Title

Veterinary Immunology and Immunopathology

Volume

232

First Page

110181

DOI

10.1016/j.vetimm.2020.110181

Abstract

Non-typhoidal Salmonella is one of the most common causes of bacterial foodborne disease and consumption of contaminated poultry products, including turkey, is one source of exposure. Minimizing Salmonella colonization of commercial turkeys could decrease the incidence of Salmonella-associated human foodborne illness. Understanding host responses to these bacteria is critical in developing strategies to minimize colonization and reduce food safety risk. In this study, we evaluated bacterial load and blood leukocyte transcriptomic responses of 3-week-old turkeys challenged with the Salmonella enterica serovar Typhimurium (S. Typhimurium) UK1 strain. Turkeys (n = 8/dose) were inoculated by oral gavage with 108 or 1010 colony forming units (CFU) of S. Typhimurium UK1, and fecal shedding and tissue colonization were measured across multiple days post-inoculation (dpi). Fecal shedding was 1–2 log10 higher in the 1010 CFU group than the 108 CFU group, but both doses effectively colonized the crop, spleen, ileum, cecum, colon, bursa of Fabricius and cloaca without causing any detectable clinical signs in either group of birds. Blood leukocytes were isolated from a subset of the birds (n = 3–4/dpi) both pre-inoculation (0 dpi) and 2 dpi with 1010 CFU and their transcriptomic responses assayed by RNA-sequencing (RNA-seq). At 2 dpi, 647 genes had significant differential expression (DE), including large increases in expression of immune genes such as CCAH221, IL4I1, LYZ, IL13RA2, IL22RA2, and ACOD1. IL1β was predicted as a major regulator of DE in the leukocytes, which was predicted to activate cell migration, phagocytosis and proliferation, and to impact the STAT3 and toll-like receptor pathways. These analyses revealed genes and pathways by which turkey blood leukocytes responded to the pathogen and can provide potential targets for developing intervention strategies or diagnostic assays to mitigate S. Typhimurium colonization in turkeys.

Comments

This article is published as Monson, Melissa S., Bradley L. Bearson, Matthew J. Sylte, Torey Looft, Susan J. Lamont, and Shawn MD Bearson. "Transcriptional response of blood leukocytes from turkeys challenged with Salmonella enterica serovar Typhimurium UK1." Veterinary Immunology and Immunopathology (2020): 110181. doi: 10.1016/j.vetimm.2020.110181.

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Share

COinS