Consumption of Oxidized Oil Increases Oxidative Stress in Broilers and Affects the Quality of Breast Meat

Thumbnail Image
Supplemental Files
Date
2011-02-01
Authors
Zhang, Wangang
Xiao, Shan
Lee, Eun
Ahn, Dong
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ahn, Dong
Professor
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Animal Science
Abstract

A total of 120 4-week-old broiler chickens were allotted to 12 pens and fed one of three diets including control, oxidized diet (5% oxidized oil), or antioxidant-added diet (500 IU vitamin E) for 2 weeks. Blood samples were collected at the end of feeding trial, and breast muscles were sampled immediately after slaughter. Breast meats were also collected 24 h after slaughter and used for meat quality measurements. Oxidative stress in blood, lipid and protein oxidation, and sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity of breast muscle were determined. The oxidized diet increased oxidative stress in blood and increased carbonyl content in breast meat compared with the other two dietary treatments (P < 0.05). Lipid oxidation of breast muscles with the antioxidant-supplemented diet was lower than that with the oxidized and control diet groups (P < 0.05). Meat from birds fed the oxidized diet showed higher drip loss after 1 and 3 days of storage and greater 0−1 h post-mortem pH decline (P < 0.05). Significant differences in specific SERCA activity in breast muscles from birds fed control and oxidized diets (P < 0.05) were detected. This suggested that dietary oxidized oil induced oxidative stress in live birds and increased lipid and protein oxidation in breast muscle. Decrease in SERCA activity in breast muscles due to oxidative stress in live animals accelerated post-mortem glycolysis, which sped the pH drop after slaughter and increased drip loss, indicating that oxidation of diet can cause PSE-like (pale, soft, and exudative) conditions in broiler breast muscles.

Comments

Reprinted with permission from Journal of Agricultural and Food Chemistry 59 (2011): 969, doi:10.1021/jf102918z. Copyright 2010 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections