Campus Units

Biochemistry, Biophysics and Molecular Biology, Roy J. Carver Department of, Bioinformatics and Computational Biology, Baker Center for Bioinformatics and Biological Statistics

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

7-2011

Journal or Book Title

Journal of Structural and Functional Genomics

Volume

12

Issue

2

First Page

137

Last Page

147

DOI

10.1007/s10969-011-9113-3

Abstract

We propose a novel method of calculation of free energy for coarse grained models of proteins by combining our newly developed multibody potentials with entropies computed from elastic network models of proteins. Multi-body potentials have been of much interest recently because they take into account three dimensional interactions related to residue packing and capture the cooperativity of these interactions in protein structures. Combining four-body non-sequential, four-body sequential and pairwise short range potentials with optimized weights for each term, our coarse-grained potential improved recognition of native structure among misfolded decoys, outperforming all other contact potentials for CASP8 decoy sets and performance comparable to the fully atomic empirical DFIRE potentials. By combing statistical contact potentials with entropies from elastic network models of the same structures we can compute free energy changes and improve coarse-grained modeling of protein structure and dynamics. The consideration of protein flexibility and dynamics should improve protein structure prediction and refinement of computational models. This work is the first to combine coarse-grained multibody potentials with an entropic model that takes into account contributions of the entire structure, investigating native-like decoy selection.

Comments

This is a manuscript of an article published as Zimmermann, Michael T., Sumudu P. Leelananda, Pawel Gniewek, Yaping Feng, Robert L. Jernigan, and Andrzej Kloczkowski. "Free energies for coarse-grained proteins by integrating multibody statistical contact potentials with entropies from elastic network models." Journal of structural and functional genomics 12, no. 2 (2011): 137-147. The final publication is available at Springer via http://dx.doi.org10.1007/s10969-011-9113-3. Posted with permission.

Copyright Owner

Springer Science+Business Media B.V.

Language

en

File Format

application/pdf

Published Version

Share

COinS