Campus Units
Biomedical Sciences, Genetics
Document Type
Article
Publication Version
Published Version
Publication Date
2010
Journal or Book Title
RNA
Volume
16
First Page
1167
Last Page
1181
DOI
10.1261/rna.2154310
Abstract
Here we report a novel finding of an antisense oligonucleotide (ASO) microwalk in which we examined the position-specific role of intronic residues downstream from the 5′ splice site (5′ ss) of SMN2 exon 7, skipping of which is associated with spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Our results revealed the inhibitory role of a cytosine residue at the 10th intronic position (10C), which is neither conserved nor associated with any known splicing motif. Significance of 10C emerged from the splicing pattern of SMN2 exon 7 in presence of a 14-mer ASO (L14) that sequestered two adjacent hnRNP A1 motifs downstream from 10C and yet promoted SMN2 exon 7 skipping. Another 14-mer ASO (F14) that sequestered both, 10C and adjacent hnRNP A1 motifs, led to a strong stimulation of SMN2 exon 7 inclusion. The inhibitory role of 10C was found to be tightly linked to its unpaired status and specific positioning immediately upstream of a RNA:RNA helix formed between the targeting ASO and its intronic target. Employing a heterologous context as well as changed contexts of SMN2 intron 7, we show that the inhibitory effect of unpaired 10C is dependent upon a long-distance interaction involving downstream intronic sequences. Our report furnishes one of the rare examples in which an ASO-based approach could be applied to unravel the critical role of an intronic position that may not belong to a linear motif and yet play significant role through long-distance interactions.
Copyright Owner
RNA Society
Copyright Date
2010
Language
en
File Format
application/pdf
Recommended Citation
Singh, Natalia N.; Hollinger, Katrin; Bhattacharya, Dhruva; and Singh, Ravindra N., "An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing" (2010). Biomedical Sciences Publications. 2.
https://lib.dr.iastate.edu/bms_pubs/2
Comments
This is an article from RNA 16 (2010): 1167, doi:10.1261/rna.2154310. Posted with permission.