Adverse Effects of Antimicrobials via Predictable or Idiosyncratic Inhibition of Host Mitochondrial Components

Thumbnail Image
Date
2012-08-01
Authors
Barnhill, Alison
Brewer, Matt
Carlson, Steve
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Brewer, Matt
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Biomedical Sciences

The Department of Biomedical Sciences aims to provide knowledge of anatomy and physiology in order to understand the mechanisms and treatment of animal diseases. Additionally, it seeks to teach the understanding of drug-action for rational drug-therapy, as well as toxicology, pharmacodynamics, and clinical drug administration.

History
The Department of Biomedical Sciences was formed in 1999 as a merger of the Department of Veterinary Anatomy and the Department of Veterinary Physiology and Pharmacology.

Dates of Existence
1999–present

Related Units

  • College of Veterinary Medicine (parent college)
  • Department of Veterinary Anatomy (predecessor, 1997)
  • Department of Veterinary Physiology and Pharmacology (predecessor, 1997)

Journal Issue
Is Version Of
Versions
Series
Department
Biomedical Sciences
Abstract

This minireview explores mitochondria as a site for antibiotic-host interactions that lead to pathophysiologic responses manifested as nonantibacterial side effects. Mitochondrion-based side effects are possibly related to the notion that these organelles are archaic bacterial ancestors or commandeered remnants that have co-evolved in eukaryotic cells; thus, this minireview focuses on mitochondrial damage that may be analogous to the antibacterial effects of the drugs. Special attention is devoted to aminoglycosides, chloramphenicol, and fluoroquinolones and their respective single side effects related to mitochondrial disturbances. Linezolid/oxazolidinone multisystemic toxicity is also discussed. Aminoglycosides and oxazolidinones are inhibitors of bacterial ribosomes, and some of their side effects appear to be based on direct inhibition of mitochondrial ribosomes. Chloramphenicol and fluoroquinolones target bacterial ribosomes and gyrases/topoisomerases, respectively, both of which are present in mitochondria. However, the side effects of chloramphenicol and the fluoroquinolones appear to be based on idiosyncratic damage to host mitochondria. Nonetheless, it appears that mitochondrion-associated side effects are a potential aspect of antibiotics whose targets are shared by prokaryotes and mitochondria—an important consideration for future drug design.

Comments

This article is from Antimicrob. Agents Chemother. August 2012 vol. 56 no. 8, 4046-4051. doi:10.1128/AAC.00678-12. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2012
Collections