Campus Units

Biomedical Sciences, Veterinary Clinical Sciences, Veterinary Diagnostic and Production Animal Medicine

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

1-28-2019

Journal or Book Title

Preprints

First Page

2019010275

Abstract

Identifying appropriate animal models is critical in developing translatable in vitro and in vivo systems for therapeutic development and investigating disease pathophysiology. These animal models should have direct biological and translational relevance to the underlying disease they are supposed to mimic. Aging dogs naturally develop a cognitive decline in many aspects including learning and memory, but also exhibit human-like individual variability in the aging process. Neurodegenerative processes that can be observed in both human and canine brains include the progressive accumulation of β-amyloid (Aβ) found as diffuse plaques in the prefrontal cortex, including the gyrus proreus, the hippocampus, and in the cerebral vasculature. A growing body of epidemiological data shows that human patients with neurodegenerative diseases have concurrent intestinal lesions, and histopathological changes in the gastrointestinal (GI) tract occurs decades that evolve before neurodegenerative changes. Gut microbiome alterations also have been observed in many neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases, and inflammatory CNS diseases. Interestingly, only recently has the dog gut microbiome been recognized to more closely resemble in composition and in functional overlap with the human gut microbiome as compared to rodent models. This article aims to review the physiology of the gut-brain axis (GBA), and its involvement with neurodegenerative diseases in dogs and humans. Additionally, we outline the advantages and disadvantages of traditional in vitro and in vivo models and discuss future research directions investigating major human neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases using dogs.

Comments

This is a pre-print of the article Ambrosini, Yoko, Dana Borcherding, Anumantha Kanthasamy, Hyun Jung Kim, Albert Jergens, Karin Allenspach, and Jonathan Mochel. "The Role of the Gut-Brain Axis in Neurodegenerative Diseases and Relevance of the Canine Model: A Review." Preprints (2019): 2019010275. Posted with permission.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Published Version

Share

COinS