Multiscale Modeling of TiO2 Nanoparticle Production in Flame Reactors: Effect of Chemical Mechanism

Thumbnail Image
Date
2010-01-01
Authors
Mehta, Maulik
Sung, Yonduck
Raman, Venkatramanan
Fox, Rodney
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Fox, Rodney
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

For titanium dioxide (TiO2) nanoparticles manufactured in flame reactors, the precursor is injected into a pre-existing flame, exposing it to a high-temperature gas phase, leading to nucleation and particle growth. Predictive modeling of this chemical process requires simultaneous development of detailed chemical mechanisms describing gas-phase combustion and particle evolution, as well as advanced computational tools for describing the turbulent flow field and its interactions with the chemical processes. Here, a multiscale computational tool for flame-based TiO2 nanoparticle synthesis is developed and a flamelet model representing detailed chemistry for particle nucleation is proposed. The effect of different chemical mechanisms (i.e., one-step, detailed, flamelet) on the prediction of nanoparticle nucleation is investigated using a plug-flow reactor and a partially stirred tank reactor to model the flow field. These simulations demonstrate that particle nucleation occurs much later in the flame with detailed titanium oxidation chemistry, compared to one-step chemistry. Finally, a large-eddy simulation tool is developed to study the effect of precursor injection configuration on nanoparticle formation in turbulent flames.

Comments

This article is from Industrial & Engineering Chemistry Research 49 (2010): 10663-10673, doi: 10.1021/ie100560h. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections