Document Type

Article

Research Focus Area

Biorenewables, Renewable Energy

Publication Date

2011

Journal or Book Title

Current Opinion in Chemical Engineering

Volume

1

Issue

1

First Page

38

Last Page

42

DOI

10.1016/j.coche.2011.08.003

Abstract

Metabolic Engineering has enabled the production of biorenewable fuels and chemicals from biomass using recombinant bacteria. The economic viability of these processes is often limited by inhibition of the biocatalyst by the metabolic product, such as a carboxylic acid or alcohol, or by contaminant compounds in the biomass-derived sugars, such as acetic acid or furans. Historically, selection-based methods have been used to improve biocatalyst tolerance to these inhibitors. But recently, genome-wide analysis has been used to both identify the mechanism of inhibition and reverse engineer inhibitor-tolerant strains, enabling the rational, predictive manipulation of bacteria in order to increase inhibitor tolerance. Here we review recent work in this area, particularly in relation to carboxylic acids, furfural and butanol.

Comments

NOTICE: This is the author’s version of a work that was accepted for publication in Current Opinion in Chemical Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Current Opinion in Chemical Engineering, 1 (1) 2011,doi: 10.1016/j.coche.2011.08.003.

Copyright Owner

Elsevier Ltd.

Language

en

File Format

application/pdf

Share

COinS