Document Type

Article

Publication Date

2010

Journal or Book Title

Journal of Combinatorial Chemistry

Volume

12

Issue

1

First Page

51

Last Page

56

DOI

10.1021/cc900116c

Abstract

Controlled delivery of therapeutic protein drugs using biodegradable polymer carriers is a desired characteristic that enables effective, application-specific therapy and treatment. Previous studies have focused on protein delivery from polymers using conventional "one-sample-at-a- time" techniques, which are time-consuming and costly. In addition, many therapeutic proteins are in limited supply and are expensive, so it is desirable to reduce sample size for design and development of delivery devices. We have developed a rapid, high throughput technique based on a highly sensitive fluorescence-based assay to detect and quantify protein released from polyanhydrides while utilizing relatively small amounts of protein (∼40 μg). These studies focused on the release of a model protein, Texas Red conjugated bovine serum albumin, from polyanhydride copolymers based on sebacic acid (SA) and 1,6-bis(p-carboxyphenoxy)hexane (CPH). The protein release profiles were assessed simultaneously to investigate the effect of polymer device geometry (nanospheres vs films), polymer chemistry, and pH of the release medium. The results indicated that the nanosphere geometry, SA-rich chemistries, and neutral pH release medium led to a more rapid release of the protein compared to the film geometry, CPH-rich chemistries, and acidic pH release medium, respectively. This high throughput fluorescence-based method can be readily extended to study release kinetics for other proteins and polymer systems.

Comments

Reprinted (adapted) with permission from Journal of Combinatorial Chemistry 12 (2010): 51, doi: 10.1021/cc900116c. Copyright 2010 American Chemical Society.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf

Share

COinS