In Situ NMR Systems

Thumbnail Image
Date
2001-01-01
Authors
Shanks, Jacqueline
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Shanks, Jacqueline
Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

In situ NMR is becoming an established technology for applications in bioprocessing and metabolic engineering. The in situ NMR biosensor acts as a noninvasive pH, ion, and concentration meter, with 31P and 13C as the two main isotopes of study. A substantial data base now exists for phosphorus and carbon spectra of bacteria and yeast. In situ NMR can provide many of the state variables needed for modeling glycolytic pathway function. NMR micro-reactor technology has improved significantly in the last decade. Several designs for immobilized cell reactors have been tested, and in particular, considerable gains have been made in the feasibility of studying aerobic, chemostat cultures with in situ NMR. Acquisition of 31P spectra from cell suspensions of 3-5% v/v under controlled conditions can be made in 3 – 7 minute time resolution in several systems.

Comments

This article is from Current Issues in Molecular Biology 3 (2001): 15. Posted with permission.

Description
Keywords
Citation
DOI
Source
Copyright
Mon Jan 01 00:00:00 UTC 2001
Collections