Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

6-2012

Journal or Book Title

Colloids and Surfaces B: Biointerfaces

Volume

94

Issue

1

First Page

27

Last Page

35

DOI

10.1016/j.colsurfb.2012.01.015

Abstract

Quantum dots (QDs), with their variable luminescent properties, are rapidly transcending traditional labeling techniques in biological imaging and hold vast potential for biosensing applications. An obstacle in any biosensor development is targeted specificity. Here we report a facile procedure for creating QDs targeted to the cell membrane with the goal of cell-surface protease biosensing. This procedure generates water-soluble QDs with variable coverage of lipid functional groups. The resulting hydrophobicity is quantitatively controlled by the molar ratio of lipids per QD. Appropriate tuning of the hydrophobicity ensures solubility in common aqueous cell culture media and while providing affinity to the lipid bilayer of cell membranes. The reaction and exchange process was directly evaluated by measuring UV-vis absorption spectra associated with dithiocarbamate formation. Cell membrane binding was assessed using flow cytometry and total internal reflection fluorescence imaging with live cells, and tissue affinity was measured using histochemical staining and fluorescence imaging of frozen tissue sections. Increases in cell and tissue binding were found to be regulated by both QD hydrophobicity and surface charge, underlying the importance of QD surface properties in the optimization of both luminescence and targeting capability.

Comments

NOTICE: This is the author’s version of a work that was accepted for publication in Colloids and Surfaces B: Biointerfaces. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Colloids and Surfaces B: Bioinerfaces, 94, 1, (2012): doi: 10.1016/j.colsurfb.2012.01.015.

Copyright Owner

Elsevier

Language

en

File Format

application/pdf

Published Version

Share

COinS