Comparison of product distribution, content and fermentability of biomass in a hybrid thermochemical/biological processing platform

Thumbnail Image
Date
2019-01-01
Authors
Zhao, Xuefei
Daugaard, Tannon
Dalluge, Dustin
Johnston, Patrick
Salazar, Andre
Santoscoy, Miguel
Smith, Ryan
Brown, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Jarboe, Laura
Professor
Person
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Organizational Unit
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Mechanical EngineeringFood Science and Human NutritionChemical and Biological EngineeringAgricultural and Biosystems EngineeringBiochemistry, Biophysics and Molecular Biology, Roy J. Carver Department ofFood Science and Human Nutrition
Abstract

Thermochemical processing is a promising method for the rapid depolymerization of biomass. This study investigated switchgrass, corn stover, red oak, hybrid poplar, and loblolly pine in terms of heteropolymer and elemental composition, and the distribution and composition of the fast pyrolysis products. Corn stover differed from other biomass types in that less of the biomass was recovered as sugar or phenolic oil (PO) and more of the biomass was recovered as bio-char and bio-gas. The sugar-rich aqueous stream recovered from the bio-oil heavy fraction was characterized in terms of sugar content and distribution, inhibitor content, and ability to support production of ethanol by Escherichia coli KO11 + lgk as a model biorenewable product. Levoglucosan was the most abundant sugar from each type of biomass, followed by either xylose or cellobiosan. For hybrid poplar, cellobiosan accounted for 30 wt% of the total sugar pool. Each of the sugar streams also contained a variety of inhibitors, particularly 5-hydroxymethylfurfural (5-HMF) and methylcyclopentenolone. Methylcyclopentenolone, maple lactone, was found to decrease the specific growth rate of E. coli by 50% when present at 0.72 wt%, indicating that it is less toxic than furfural, acetic acid and guaiacol. Sugars produced from switchgrass contained 4-fold less contaminants on a per-sugar basis than those from poplar and pine. All of the sugar streams contained too many inhibitors to be used at an industrially feasible concentration without additional detoxification. The poplar-derived pyrolytic sugar syrup was particularly inhibitory, possibly due to the high abundance of aromatic hydrocarbons, such as xylenes, and anisoles.

Comments

This is a manuscript of an article published as Chi, Zhanyou, Xuefei Zhao, Tannon Daugaard, Dustin Dalluge, Marjorie Rover, Patrick Johnston, Andre M. Salazar, Miguel C. Santoscoy, Ryan Smith, Robert C. Brown, Zhiyou Wen, Olga A. Zabotina, and Laura R. Jarboe. "Comparison of product distribution, content and fermentability of biomass in a hybrid thermochemical/biological processing platform." Biomass and Bioenergy 120 (2019): 107-116. DOI: 10.1016/j.biombioe.2018.11.006. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections