Symmetry Transition in Thin Films of Diblock Copolymer/Homopolymer Blends

Thumbnail Image
Date
2010-02-23
Authors
Mishra, Vindhya
Hur, Su-Mi
Cochran, Eric
Stein, Gila
Fredrickson, Glenn
Kramer, Edward
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Cochran, Eric
Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

The effect of blending small weight fractions of low molecular weight majority block homopolymer on the structure of multilayer films of spherical morphology poly(styrene-b-2vinylpyridine) [PS−P2VP] has been studied. The structure of the films was characterized with grazing-incidence small-angle X-ray scattering (GISAXS) and transmission electron microscopy (TEM). In multilayer films of PS−P2VP, competition between hexagonal packing of the spherical domains preferred at the surfaces with the BCC (110) packing preferred by the internal layers leads to a transition in the packing symmetry as the number of sphere layers (n) is increased.(1) Neat PS−P2VP exhibits hexagonal close-packed (HCP) symmetry up through n = 4, but at four layers coexistence of hexagonal and face-centered orthorhombic phases is observed. At n = n* = 5 the face-centered orthorhombic structure (FCO) is the stable phase. On increasing n further, the FCO phase continuously distorts to approach the arrangement of the BCC (110) plane. We observe that blending a small weight fraction of low molecular weight PS homopolymer with PS−P2VP suppresses this transition and stabilizes the hexagonal close-packed arrangement beyond four layers. Moreover, n* increases with increasing weight fraction of incorporated homopolymer for the small weight fractions of homopolymer used in this study. Self-consistent-field theory simulations designed to mimic the experimental system corroborate that n* is expected to increase and show that the PS homopolymer segregates to the interstices of the HCP unit cell. This suggests that the homopolymer reduces the stretching of the PS block and the free energy penalty of HCP relative to BCC inner layers. This result is consistent with the hypothesis that the excessive stretching requirement in an HCP arrangement is the cause of its higher free energy as compared to the BCC lattice.

Comments

Reprinted with permission from Macromolecules 43 (2010): 1942–1949, doi:10.1021/ma901891b. Copyright 2010 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections