Campus Units

Chemical and Biological Engineering, Food Science and Human Nutrition, Materials Science and Engineering, Ames Laboratory

Document Type


Research Focus Area

Advanced and Nanostructured Materials

Publication Version

Submitted Manuscript

Publication Date


Journal or Book Title

ACS Applied Materials and Interfaces




A waterborne, UV-blocking, and visually transparent nanocomposite coating was formulated with ZnO nanoparticles and 2-hydroxyethyl cellulose (HEC). The coating is highly effective (< 5% UV and ~ 65% visible transmittance) and the film thickness (0.2 – 2.5 μm) is ~100 times thinner than the conventional coatings of similar UV-blocking performance. The superior properties are due to the fractal structures of ZnO nanoparticles assembled within the HEC matrix, revealed by scanning electron microscopy (SEM) and small-angle x-ray scattering (SAXS). Changing the binder to 2-hydroxyethyl starch (HES) diminishes the UV-blocking performance, as ZnO nanoparticles form dense globular aggregates, with an aggregation number measured by SAXS three orders of magnitude larger than the HEC coating. Since HEC and HES share the same same chemical compositionrepeating glucose unit in the polymer backbone, it suggests that the conformational characteristics of the binder polymer have a strong influence on the nanoparticle aggregation, which plays a key role in determining the optical performance. Similar structures were achieved with TiO2 nanoparticles. This study not only offers a cost-effective and readily scalable method to fabricate transparent UV-blocking coating, but also demonstrates that the unique fractal aggregation structures in a nanocomposite material can provide high performance and functionality without fully dispersing the nanoparticles.


This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acsami.9b05383. Posted with permission.

Copyright Owner

American Chemical Society



File Format


Published Version