Campus Units

Chemical and Biological Engineering, Ames Laboratory

Document Type

Article

Research Focus Area

Renewable Energy

Publication Version

Accepted Manuscript

Publication Date

5-2017

Journal or Book Title

Renewable Energy

Volume

105

First Page

647

Last Page

655

DOI

10.1016/j.renene.2016.12.028

Abstract

Anion-exchange membrane-based direct glycerol fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between anode and cathode, thus achieving high DGFC’s performance. A simple aqueous-phase reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a peak power density of 214.7 mW cm−2 at 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in cell voltage for a PTFE thin film and AEM; similarly, the cell voltage degradation rate decreases from 1.2 to 0.8 mV h−1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h−1 over an 80 h durability test period. Transmission electron microscopy results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.

Comments

This is a manuscript of an article published as Benipal, Neeva, Ji Qi, Jacob C. Gentile, and Wenzhen Li. "Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator." Renewable Energy 105 (2017): 647-655. DOI: 10.1016/j.renene.2016.12.028. Posted with permission.

Copyright Owner

Elsevier Ltd.

Language

en

File Format

application/pdf

Published Version

Share

COinS