Campus Units

Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals

Document Type


Research Focus Area


Publication Version

Submitted Manuscript

Publication Date


Journal or Book Title





Here we present an approach for selectively modifying the properties of semicrystalline polymers by introducing ″bioadvantaged″ counits. With this approach, the unique functionality of biomass can be leveraged to tailor the properties of the amorphous phase of semicrystalline polymers with minimal impact on crystallinity and thermomechanical properties. As a model case, PA 6,6 copolyamides were produced using the bioadvantaged monomer trans-3-hexenedioic acid (t3HDA). The analogous structure of t3HDA to adipic acid, a PA 6,6 monomer, allows for a seamless integration. Screening over the entire composition range identified the t3HDA loading (20 mol %) beyond which properties deviate appreciably from Nylon 6,6. Once identified, copolyamides of suitable compositions were upgraded to commercial quality and fully characterized to assess the influence of counit loading and polymer structure on thermal and mechanical properties. Samples were characterized using gel permeation chromatography (GPC), proton nuclear magnetic resonance spectroscopy (1H NMR), heteronuclear single quantum coherence spectroscopy (HSQC), wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, flexural testing, and water absorption testing. t3HDA units were shown to hydrate during the harsh polycondensation to 3-hydroxyhexanedioic acid (3HHDA) and fully incorporate into the polymer backbone. Loading levels up to 20% were shown to have comparable thermal and mechanical properties in the dry state, yet moisture absorption—a known method for improving the toughness, yield strain, and elongation of polyamides—was enhanced by over 100% at 20% loading. This case study on bioadvantaged copolymers elucidates the governing structure–function principles that can be leveraged to forward value-added renewable polymers.


This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Macromolecules, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.macromol.1c00651. Posted with permission.

Copyright Owner

American Chemical Society



File Format


Published Version