Campus Units

Civil, Construction and Environmental Engineering, Electrical and Computer Engineering, Center for Nondestructive Evaluation (CNDE)

Document Type

Conference Proceeding

Conference

SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring

Publication Version

Published Version

Publication Date

3-27-2015

Journal or Book Title

Proceedings of SPIE

Volume

9435

Issue

94351N

First Page

94351N-1

Last Page

94351N-11

Research Focus Area

Structural Engineering

DOI

10.1117/12.2084369

Conference Title

Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems

Conference Date

March 8-12, 2015

City

San Diego, CA

Abstract

The authors have developed a capacitive-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. The measurement principle is based on a measurable change in capacitance provoked by strain. In the case of bi-directional in-plane strain, the sensor output contains the additive measurement of both principal strain components. In this paper, we present an algorithm for retrieving the directional strain from measurements. The algorithm leverages the dense network application of the thin film sensor to reconstruct the surface strain map. A bi-directional shape function is assumed, and it is differentiated to obtain expressions for planar strain. A least square estimator (LSE) is used to reconstruct the planar strain map from the sensors measurement’s, after the system’s boundary conditions have been enforced in the model. The coefficients obtained by the LSE can be used to reconstruct the estimated strain map or the deflection shape directly. Results from numerical simulations and experimental investigations show good performance of the algorithm, in particular for monitoring surface strain on cantilever plates.

Comments

This proceeding is published as Hussam Saleem, Austin Downey, Simon Laflamme, "Algorithm for decomposition of additive strain from dense network of thin film sensors", Proc. SPIE 9435, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015, 94351N (27 March 2015); doi: 10.1117/12.2084369. Posted with permission.

Copyright Owner

Society of Photo-Optical Instrumentation Engineers (SPIE)

Language

en

File Format

application/pdf

Share

Article Location

 
COinS