Campus Units

Civil, Construction and Environmental Engineering, Electrical and Computer Engineering, Center for Nondestructive Evaluation (CNDE), Mechanical Engineering

Document Type

Article

Publication Version

Published Version

Publication Date

2018

Journal or Book Title

Sensors

Volume

18

Issue

3

First Page

831

DOI

10.3390/s18030831

Abstract

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNTs content. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both static and dynamically varying compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.

Research Focus Area

Structural Engineering

Comments

This article is published as Meoni, Andrea, Antonella D’Alessandro, Austin Downey, Enrique García-Macías, Marco Rallini, A. Luigi Materazzi, Luigi Torre, Simon Laflamme, Rafael Castro-Triguero, and Filippo Ubertini. "An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures." Sensors 18, no. 3 (2018): 831. DOI: 10.3390/s18030831. Posted with permission.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Share

COinS